A simple proof of the Littlewood-Richardson rule and applications

نویسندگان

  • Jeffrey B. Remmel
  • Mark Shimozono
چکیده

We present a simple proof of the Littlewood-Richardson rule using a sign-reversing involution, and show that a similar involution provides a com-binatorial proof of the SXP algorithm of Chen, Garsia, and Remmel 2] which computes the Schur function expansion of the plethysm of a Schur function and a power sum symmetric function. The methods of this paper have also been applied to prove combinatorial formulas for the characters of coordinate rings of nilpotent conjugacy classes of matrices 14].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Littlewood-richardson Skew Tableaux

We give a positive equivariant Littlewood-Richardson rule also discovered independently by Molev. Our proof generalizes a proof by Stembridge of the ordinary Littlewood-Richardson rule. We describe a weight-preserving bijection between our indexing tableaux and the Knutson-Tao puzzles.

متن کامل

A Geometric Littlewood-richardson Rule

We describe an explicit geometric Littlewood-Richardson rule, interpreted as deforming the intersection of two Schubert varieties so that they break into Schubert varieties. There are no restrictions on the base field, and all multiplicities arising are 1; this is important for applications. This rule should be seen as a generalization of Pieri’s rule to arbitrary Schubert classes, by way of ex...

متن کامل

A Concise Proof of the Littlewood-Richardson Rule

We give a short proof of the Littlewood-Richardson rule using a sign-reversing involution.

متن کامل

ar X iv : 0 70 6 . 37 38 v 1 [ m at h . A G ] 2 6 Ju n 20 07 EQUIVARIANT LITTLEWOOD - RICHARDSON TABLEAUX

We give a positive equivariant Littlewood-Richardson rule also discovered independently by Molev. Our proof generalizes a proof by Stembridge of the ordinary Littlewood-Richardson rule. We describe a weight-preserving bijection between our indexing tableaux and the Knutson-Tao puzzles.

متن کامل

Why Should the Littlewood–richardson Rule Be True?

We give a proof of the Littlewood-Richardson Rule for describing tensor products of irreducible finite-dimensional representations of GLn. The core of the argument uses classical invariant theory, especially (GLn,GLm)duality. Both of the main conditions (semistandard condition, lattice permutation/Yamanouchi word condition) placed on the tableaux used to define Littlewood-Richardson coefficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 193  شماره 

صفحات  -

تاریخ انتشار 1998